C. B. Palamindu REGISTRAR EDUCATIONAL AND RESEARCH INSTITUTE Dr. M.G.R. Δ MANGCATIONAL AND RESEARCH INSTITUTE DEPARTMENT OF BIOMEDICAL JNSTREMENTATIONAL AND RESEARCH INST CUDDICULURS VR

CURRICULUM AND SYLLABUS

2017 REGULATION - Electives

Elective 1

Course Code	Course Title	С	L	T/S	P/R	Ty/
				Lr		Lb/ ETL
BBI17E01	Troubleshooting of Bio-Medical Equipments	3	3	0/0	0/0	Ту
BBI17E02	Rehabilitation Engineering	3	3	0/0	0/0	Ту
BBI17E03	Human Assist Devices	3	3	0/0	0/0	Ту

Elective 2

Course Code	Course Title	С	L	T/S	P/R	Ту /
				Lr		Lb/ ETL
BBI17E04	Laser and Ultrasonic Application in Medicine	3	3	0/0	0/0	Ту
BBI17E05	Computer based Medical Instrumentation	3	3	0/0	0/0	Ту
BBI17E06	Biomedical MEMS and Nano Technology	3	3	0/0	0/0	Ту

Elective 3

Course Code	Course Title	С	L	T/S	P/R	Ту /
				Lr		Lb/ ETL
BBI17E07	Radiological Equipments	3	3	0/0	0/0	Ту
BBI17E08	Biological Effects of Radiation	3	3	0/0	0/0	Ту
BBI17E09	Computer in Medicine	3	3	0/0	0/0	Ту

Elective 4

Course Code	Course Title	С	L	T/S Lr	P/R	Ty / Lb/ ETL
BBI17E10	Medical Informatics	3	3	0/0	0/0	Ту
BBI17E11	Fibre Optic and Laser Instruments	3	3	0/0	0/0	Ту
BBI17E12	Diagnostic and Therapeutic Equipments I	3	3	0/0	0/0	Ту

Elective 5

Course Code	Course Title	С	L	T/S Lr	P/R	Ty / Lb/ ETL
BBI17E13	Recent Advances Applied to Hospital Engineering	3	3	0/0	0/0	Ту
BBI17E14	Diagnostic and Therapeutic Equipments II	3	3	0/0	0/0	Ту
BBI17E15	System Theory Applied to Biomedical Engineering	3	3	0/0	0/0	Ту

Subject Code			ame : T			OTING	OF BIG	Э-	T / L/	L	Τ/	P/ R	С
BBI17E01			L EQUIP	MENTS	5				ETL		S.Lr		
		erequisit							Т	3	0/0	0/0	3
L : Lecture T :						Project	R : Res	earch C	: Credits				
T/L/ETL : The		/Embed	ded Theor	y and L	ab								
OBJECTIVE													
								es of m	edical instr	ruments			
			ult detecti		correctiv	ve measu	ires.						
COURSE OU													
CO1									dical instru	iments			
CO2		A	n finding					easures.					
Mapping of C								DCC	DCC	DOIG	Dott	DC	
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	POI	
CO1	H M L M H L M H								M	L	M		H
CO2	M	Н	М	L	Μ	Н	М	L	М	M	Н	N	M
COs / PSOs	PS		PSC			03		504	PSO5				
CO1		M	L			H		M	H				
CO2		H	M			L		М	Н				
H/M/L indicat	es Streng	gth of C	orrelation	H- Hi	gh, M- 1	Medium	, L-Low			1			
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval													

TROUBLESHOOTING OF BIO-MEDICAL EQUIPMENTS

UNIT I BASIC OF TROUBLESHOOTING PROCEDURES

Troubleshooting Process and Fault finding Aids, Troubleshooting Techniques, Grounding Systems in Electronic Equipment, Temperature Sensitive Intermittent Problems, and Correction Action to repair the Equipment.

UNIT II TESTING OF DEVICES

testing procedure OF resistors, capacitors and inductors, causes of failure for electronic components, testing procedure of special diodes, bipolar transistors, field effect transistor (FET), and thyristor.

UNIT III FAULT DIAGNOSIS IN CIRCUITS

Fault Diagnosis in Op-Amp Circuits, Digital Troubleshooting Methods, Digital IC Troubleshooters, Circuit board Troubleshooting.

UNIT IV BIOMEDICAL EQUIPMENT I TROUBLESHOOTING

Trouble shooting of ECG Machine, EEG Machine, Defibrillator Electrosurgical unit, Anaesthesia machine, Autoclaves and sterilizers, Endoscope

UNIT V BIOMEDICAL EQUIPMENT II TROUBLESHOOTING

Troubleshooting of Incubators, Nebulizer, Oxygen Concentrators, Oxygen cylinders and flow meters, Pulse Oximeter, Sphygmomanometers, Suction Machine, X-Ray Machine Troubleshooting.

Total Number of Hours: 45 Hrs

Text Books:

1. Khandpur R S, "Troubleshooting Electronic Equipment- Includes Repair and Maintenance", Tata McGraw-Hill, Second Edition 2009.

2. Dan Tomal and Neal Widmer, "Electronic Troubleshooting", McGraw Hill, 3rd Edition 2004.

Reference Books:

1. Nicholas Cram and Selby Holder, "Basic Electronic Troubleshooting for Biomedical Technicians", TSTC Publishing, 2nd Edition 2010

2. World Health Organisation, "Maintenance and Repair of Laboratory, Diagnostic imaging and Hospital Equipment", Geneva, 1994.

3. Ian R, McClelland, "X-ray Equipment maintenance and repairs workbook for Radiographers and Radiological Technologists", World Health Organisation, Geneva, 2004.

4. Ministry of Health and Family Welfare, "Medical Equipment Maintenance Manual- A first line maintenance guide for end users", New Delhi, October 2010.

5. Joseph.J, Panichello, "X-Ray Repair: A Comprehensive Guide to the Installation and Servicing of Radiographic Equipment", Charles C Thomas Publisher Ltd, 2nd Edition 2005.

9 Hrs

9 Hrs

9 Hrs

9 Hrs

Subject Code BBI17E02		Subject Na ENGINEE		EHAB	ILITAT	ION			T / L/ ETL	L	T/	P/ R	C
DD11/E02		Prerequisit							T	3	S.Lr 0/0	0/0	3
L : Lecture T				ed Lear	ning P.	Project	R · Res	earch C	-	5	0/0	0/0	5
T/L/ETL : The			-		0	Toject	K . Kes		. creans				
OBJECTIVE)									
		sics of Reh			eering								
		design of											
		wledge of							ion engine	ering.			
		nd various			U .	rision an	d hearin	ng					
		rious ortho			devices								
COURSE OU			<u> </u>) . h . h : 1 : 4	ation De		. ~					
CO1 CO2		Understar Canabla t				ation Er	igineerii	ng					
CO2 CO3		Capable t				to in the	field of	f rohabil	itation en	rincorin	x		
CO3		Acquires								gineering			
C04 C05		Analysis				<u> </u>			ıδ				
Mapping of C	Course												
COs/POs	PO1		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	M	L	М	Н	L	М	Н	L	М	Н	Н		Н
CO2	Н	М	Н	М	L	М	Н	L	М	Н	L		Μ
CO3	Н	М	Н	Μ	L	М	Н	Н	М	Н	L]	Μ
CO4	L	Н	М	L	Н	Μ	Н	L	L	Н	М		Η
CO5	M	Н	L	Н	Μ	L	Н	L	М	Н	L]	М
COs / PSOs]	PSO1	PSC			O3		504	PSO5				
CO1		M	H		1			M	H				
CO2		M	L			H		M	H				
CO3		H				<u>M</u>		H	L				
CO4 CO5		L H	M M			<u>N</u>		L H	M M				
H/M/L indicat	ton Str				gh, M- 1				M				
				п- П	gii, ivi- I	viculum	, L-LOW				1		
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval					_ ✓				¥4				

REHABILITATION ENGINEERING

UNIT I REHABILITATION TECHNOLOGY

Selection, design or manufacturing of augmentive or assistive devices appropriate for individual with disability

UNIT II REHABILITATION SCIENCE

Knowledge about the basic and clinical research about the variation in the physiological functioning and anatomical structure

UNIT III REHABILITATION ADVOCACY

Legal aspect helps the handicapped people in choosing the devices, the provisions available to them in this regard.

UNIT IV REHABILITATION MEDICINE

Physiological aspects of functional recovery, neurological and physhological aspects, rehabilitation therapies training to restore vision auditory and speech

UNIT V REHABILITATION ENGINEERING

Introduction to Rehabilitation Engineering - PHAATE model - Clinical practice of rehabilitation Engineering - Low technology tools - Service delivery – Universal design - Design based on human ability - Standards for assistive technology - Test for best design

Total Number of Hours: 45 Hrs

Text Books:

1. Reswick.J.What is Rehabilitation Engineering?, Annual Review of rehabilitation – volume 2 springer – verlag, New York, 1982.

Reference Books:

1. Robinsion.C.J, Rehabilitation Engineering Handbook of electrical engineering, CRC Press, Bocaraton, 1993.

9 Hrs

9 Hrs

9 Hrs

9 Hrs

Subject Code BBI17E03	: 5	Subject Na	ame: H	IUMAN	ASSIS	T DEV	ICES		T / L/ ETL	L	T / S.Lr	P/ R	C
	F	Prerequisit	e:						Т	3	0/0	0/0	3
L : Lecture T :	: Tutor	ial SLr :	Supervis	ed Leari	ning P:	Project	R : Res	search C	C: Credits				
T/L/ETL : The		ab/Embed	ded Theor	ry and L	ab								
OBJECTIVE													
> To Stu						al Heart							
U		wledge of			evices								
		out Artifici	•		uthodio I	Darriana							
		wledge of e Respirato											
COURSE OU		<u> </u>	•		ing Alus	>							
COURSE OU		Understar			n Machi	nes and	Artifici	al Hear	-				
CO2		Capable t					Altinei						
CO3		Understar											
CO4		Understar						c Devic	200				
CO5		Acquires											
Mapping of C	Course		Ŭ		<u> </u>			115/110					
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	2
CO1	M	H	L	M	H	M	L	H	M	L	M		H
CO2	M	H	L	M	H	L	M	H	L	M	Н		L
CO3	M	Н	L	М	Н	L	М	Н	L	М	Н		H
CO4	Н	L	М	Н	М	Н	L	М	Н	Н	L	ľ	Μ
CO5	L	М	Н	L	L	Μ	Н	М	L	Н	М]	H
COs / PSOs]	PSO1	PSO	02	PS	03	PS	SO4	PSO5				
CO1		Н	N	1]	Ĺ		Μ	Н				
CO2		М	L			Ν		H	L				
CO3		L	L		I	Н		М	Н				
CO4		М	H			Ĺ		М	Н				
CO5		М	H		-	Ĺ		М	Н				
H/M/L indicat	es Stre	ength of C	orrelation	H- Hi	gh, M- 1	Medium	, L-Low		1	1			
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval													

B.Tech Regulation 2017 Approved by the Academic Council

Department of BIOMEDICAL INSTRUMENTATION ENGINEERING

HUMAN ASSIST DEVICES

UNIT I HEART LUNG MACHINES AND ARTIFICIAL HEART

Condition to be satisfied by the H/L System - Different types of Oxygenerators, Pumps, Pulsatile and Continuous Types, Monitoring Process, Shunting, The Indication for cardiac Transplant, Driving Mechanism, Blood Handling System, Functioning and different types of Artificial Heart, Mock test setup for assessing its Functions

UNIT II CARDIAC ASSIST DEVICES

Synchronous Counter pulsation, Assisted through Respiration Right Ventricular Bypass Pump, Left Ventricular Bypass Pump, Open Chest and closed Chest type, Intra Aortica Veno Pumping, Prosthetic Vardio Valves, Principles and problem, Biomaterials for implantable purposes, its characteristics and testing

UNIT III ARTIFICIAL KIDNEY

Indication and Principles of heamodynalisis, Membrane, Dialasate, Different Types of hearmodialisers, Monitoring systems, Wearable Artificial Kidney, Implanting Type

UNIT IV PROSTHETIC AND ORTHODIC DEVICES

Hand and Arm Replacement – Different Types of Models Externally Powered Limb Prosthesis Feedback in Orthodic system, Functional Electrical Stimulation, Sensory Assist Devices, Materials for Prosthetic and orthodic devices

UNIT V RESPIRATORY AIDS AND HEARING AIDS

Intermittent positive pressure, Breathing Apparatus Operating Sequence, Electronic IPPB unit with monitoring for all respiratory parameters- Audiograms, Types of Deafness Conductive and Nervous, Hearing Aids, Construction and Functional Characteristics.

Total Number of Hours: 45 Hrs

Text Books:

1. Leving S.N.(Ed.), Advances in Bio Medical Engineering and Medical physics. Volumes I, II and IV, Inter University Publications, New York, 1968.

2. Kolff W.J., Artificial Organs, John Wiley and Sons, New York 1979.

Reference Books:

1. Andreas, F.Von racum, Hand book of bio material evaluation, Mc-Millan publishers, 1980.

2. Albert M. Cook and Webster J.G., Therapeutic Medical Devices, Prentice Hall Inc., New Jersery, 1982.

9 Hrs

9 Hrs

9 Hrs

9 Hrs

Subject Code BBI17E04		Subject Na APPLICA				TRASC	ONIC		T / L/ ETL	L	T / S.Lr	P/ R	C
	I	Prerequisit	e:						Т	3	0/0	0/0	3
L : Lecture T :						Project	R : Res	search C	C: Credits				
T/L/ETL : The		ab/Embed	ded Theor	ry and L	ab								
OBJECTIVE													
		owledge C											
	•	oout Ultras oout Ultras		nora									
		out Ultras			• C								
	•	owledge C	0.			n In Me	dcine						
× 10 Gu		ownedge	i noiogia	ipine i t	pileutio		aeme						
COURSE OU	TCO	MES (CO	(3-5))									
CO1		Acquires	· · · ·		aser								
CO2		Graduate	acquires l	knowled	ge on U	ltrasoni	cs						
CO3		Capable t	o analyze	Ultrasc	onic Scar	nners							
CO4			nds High l	0,									
CO5		Acquires	Ŭ		<u> </u>	<u> </u>		n Medc	ine				
Mapping of C						<u>```</u>				1			
COs/POs	PO1		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	POI	
CO1	M	H	M	L	M	H	M	L	H	M	L		M
CO2	H	M	L	M	H	L	M	L	H	M	L		M
CO3	L	M	H	L	M	H	L	M	H	L	M		H
CO4 CO5	H M	M L	L H	M H	H M	L L	M H	H M	L L	M M	H H		H M
05	IVI	L	п	п	IVI		п	IVI		IVI	п	r	VI
COs / PSOs	1	PSO1	PSO	$\frac{1}{2}$	PS	03	P	SO4	PSO5				
CO1		M	H			L		M	H				
CO2		M	L			H		M	L				
CO3		Н	N			L		M	H				
CO4		М	Н			L	_	М	Н				
CO5		L	Ν	1	J	H		М	L				
H/M/L indicat	es Stre	ength of C	orrelation	H- Hi	igh, M- 1	Medium	n, L-Low	1					
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives ✓	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval				<u> </u>		I		<u> </u>					

LASER AND ULTRASONIC APPLICATION IN MEDICINE

UNIT I LASER

Principles of Laser action, different types and of lasers and its operation, Applications of Laser in Biology, Dentistry, Ophthalmology, Dermatology, Medicine, Surgery, Interferometer Applications, Flurorescence studies in cancer Diagnosis, Laser in Genetic Engineering, Low power applications in Medicine.

UNIT II ULTRASONICS

Different Modes of Display, A, B, C, scanning Techniques, Absorption in biological Tissues, Measurement of Ultrasonic Energy, Construction of Ultrasonic probe, Ultrasonic Imaging in Abdomen, Breast, Heart, Chest, Eye, Kidney, Skull, Pulsatile Motion, Pregnant and non-Pregnant uterus.

UNIT III ULTRASONIC SCANNERS Real Time Echo, 2-D Scanners, Colour Doppler	9 Hrs
UNIT IV HIGH ENERGY ULTRASONICS	9 Hrs

Effects due to High energy ultrasonics applications in Surgery, Cell destruction, Cleaners

UNIT V HOLOGRAPHIC APPLICATION IN MEDCINE

Wave front Recording and Reconstruction, Recording Media, Image forming application, Motion Induced Constrast, correlation filtering, Holograms using Ultrasonic signals and Hologram using Lasers.

Total Number of Hours: 45 Hrs

Text Books:

1. Leon Goldman, M.D., and R. Jamies Rockwell, Jr. Lasers in medicine Gordon and breach, science publishers Inc., New York, 1971

2. Brown Y.H.V. and Dickson J.F. (Eds), Advances in Bio – Medical Engineering Volume II and V, Academic press, London, 1972

3. Georg W. Stroke, Kock W.E., Ultrasonic Imaging and Holography, plenum press, New York, 1974

Reference Books:

1. Mertellucci S. Sand Chester A.N. Laser Photo biology and photo medicine, plenum press, New York, 1989.

2. Wolbarsht M.L., Laser Application in Medicine and Biology, Plenum press, New York, 1989

9 Hrs

9 Hrs

Subject Code: BBI17E05		ubject Na NSTRUM			FER BA	SED M	IEDICA	L	T / L/ ETL	L	T / S.Lr	P/ R	C
	Р	rerequisit	e:						Т	3	0/0	0/0	3
L : Lecture T :	Tutor	ial SLr :	Supervise	ed Learr	ning P:	Project	R : Res	earch C	: Credits				
T/L/ETL : The		ab/Embed	ded Theor	y and L	ab								
OBJECTIVE													
					Compu	iter Base	ed Medi	cal Insti	rumentatio	n			
	•	out The M											
		out The S				r •, •							
		owledge O				lonitorin	ıg						
➢ To Stu COURSE OU		out Medic			stem								
COURSE OU					troducti	on Of (omputo	r Basad	Medical I	netrumo	ntation		
CO1 CO2		Capable t	-	-			-		Weuteal I	iisuume	Itation		
CO2		Capable to				nerocoi	nuoners						
CO3		Capable to			Ŭ	Comput	ers In D	atient M	onitoring				
CO4		Acquires			<u> </u>				ontoring				
Mapping of C		<u> </u>				<u> </u>		/111					
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	2
CO1	M	H	M	L	M	H	L	M	H	L	M		H
CO2	H	M	L	M	H	L	M	H	L	M	H		M
CO3	H	M	L	M	H	L	M	H	L	M	H		L
CO4	L	M	L	M	L	H	M	L	M	Н	L		M
CO5	L	М	Н	L	М	М	L	М	L	Н	L		M
COs / PSOs	I	PSO1	PSC	02	PS	03	PS	504	PSO5				
CO1		М	Н	[I	_]	М	Н				
CO2		Н	Μ	[I]	М	Н				
CO3		L	Μ	[H	ł		L	М				
CO4		М	Н	[I]	М	Н				
CO5		М	L		H	H		L	М				
H/M/L indicate	es Stre	ength of Co	orrelation	H- Hi	gh, M- 1	Medium	, L-Low			_			
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval													

Department of BIOMEDICAL INSTRUMENTATION ENGINEERING

COMPUTER BASED MEDICAL INSTRUMENTATION

UNIT I INTRODUCTION

8086 Architecture – system connections and timing – Instruction set and assembly language programming. Macro assemblers - BIOS and DOS Services - memory and I/O interfacing - Advanced Intel 32 bit processors.

UNIT II MICROCONTROLLERS

Introduction - 8051 architecture and programming, micro controller based medical systems - TMS 320 series – architecture and programming – applications in bio-signal processing – IDE51 – C Cross Assemblers.

UNIT III SYSTEM DESIGN

Multichannel computerized ECG, EMG and EEG data acquisition -storage, analysis and retrieval techniques - Medical image acquisitions through video -card - storage and retrieval techniques - Moderns and computer networking in the hospital.

UNIT IV COMPUTERS IN PATIENT MONITORING

Physiological monitoring - automated intensive care units - computerized arrhythmia monitoring information flow in a clinical lab - computerized concepts - interfacing to HIS.

UNIT V MEDICAL EQUIPMENTS SYSTEM

Microprocessor based medical system – pulmonary instrumentation – anesthesia machine – EEG system – microprocessor based blood pressure monitor - prosthetic systems - bio- chemical measuring systems and micro processor based medical devices - Radiological Information system.

Total Number of Hours: 45 Hrs

Text Books:

1. Kenneth J. Ayala, the 8051 Micro Controller - Architecture Programming And Applications, Second Edition, Penram International, 1996.

Reference Books:

1. Douglas V. Hall, Microprocessors and Interfacing: Programming and hardware, Mcgrase Hill, Singapore, 1999.

9 Hrs

9 Hrs

9 Hrs

9 Hrs

Subject Code		Subject Na			DICAL N	MEMS	AND		T / L/	L	Τ/	P/ R	C
BBI17E06		NANOTE		OGY					ETL		S.Lr		
		Prerequisit							Т	3	0/0	0/0	3
L : Lecture T :						Project	R : Res	earch C	: Credits				
T/L/ETL : The		ab/Embed	ded Theor	y and L	ab								
OBJECTIVE		ad the wor	Iring mains	inla of	MEMG	nd Mia	noaratan						
		nd the wor nd the wor					losysten	115					
		nd the con					ation in	healthca	re				
		nsight to the					tuon m	nearmea	lic				
		out the bio					pplicati	on in res	search dor	nain			
COURSE OU	-				0,		11						
CO1		understan	· · · ·		inciple c	of MEM	S and M	licrosys	tems				
CO2		understan						2					
CO3		understan	ds the cor	icepts of	f BioME	MS and	its appl	lication	in healthca	are			
CO4		Acquires	knowledg	e on the	DNA b	ased Bio	MEMS						
CO5								ology an	d its appli	cation in	research	domair	1
Mapping of C										- -			
COs/POs	PO1		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	POI	
CO1	M	Н	L	L	Μ	Н	L	Μ	Н	L	М		H
CO2	H	Н	Н	L	L	Μ	Н	Μ	Н	L	М		H
CO3	M	Н	L	M	Н	L	M	Н	L	М	Н		L
CO4	H	M	L	M	H	L	M	Н	L	M	H		L
CO5	L	Μ	Н	L	М	Н	L	M	Н	L	М]	H
		0001	DC		DC		D		DCOT		_	_	
COs / PSOs CO1		PSO1	PSC L			03 H		504 L	PSO5 M				
CO1 CO2		M M	H			1 		L M	H				
CO2 CO3		H	Н			<u>-</u> H		M	L				
CO4		M	H		I			M	H				
CO5		L	M			 /I		L	M				
H/M/L indicat	es Stre				gh, M- 1				111				
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval			1				1			I			

BIOMEDICAL MEMS AND NANOTECHNOLOGY

UNIT I MEMS

Introduction - Typical MEMS Products - Application of Micro-system in Healthcare Industry – Working Principles of Microsystems Micro-sensors – Micro-actuation - MEMS with actuation– Micro-accelerators and Micro-fluidics - Materials for MEMS and Microsystems

UNIT II MEMS and Microfluidics

Fundamental principle - Light Modulators, Beam splitter – Micro-lens, Micro-mirrors - Digital Micromirror Device, Light detectors - Important Consideration on Micro-scale fluid, Properties of fluid - Fluid Actuation Methods – Micro-pumps - Typical Micro-fluidic Channel, Micro-fluid Dispenser.

UNIT III BIOMEMS

Introduction -Principle of Biosensor, Ampero-metric Biosensor - Micro-dialysis - BioMEMS for Clinical Monitoring - Monitoring of Glucose and Lactate with a micro-dialysis probe – Ammonia Monitoring - Electronic Nose, DNA Sensors,

UNIT IV BIOMEMS AND DNA

Unique features of Nucleic Acids, Lab on the Chip, Electrophoresis, Polymerase Chain Reaction (PCR), Biochemical reaction chains for integration: Biosensors and the "lab biochip", Typical Microarray experiment, Manufacturing of Microarrays, Synthesis on the chip, Spotting Techniques, PCR on the chip, Microchamber Chips, Micro-fluidics Chips, Emerging BioMEMS Technology.

UNIT V BIOMEDICAL NANOTECHNOLOGY

Nanoparticles- Nanomaterial characterization – XRD, SAXS, TEM, SEM, Scanning Tunneling microscopy, AFM, SPM technique, Biomolecular sensing for cancer diagnostics using carbon nanotubes, Carbon nanotube biosensors, Magnetic nanoparticles for MR Imaging, Nano-devices in biomedical applications.

Total Number of Hours: 45 Hrs

Text Books:

1. Steven S, Saliterman, "Fundamentals of BioMEMS and Medical Microdevices", International Society for Optical Engineering, First Edition 2006.

2. Nitaigour Premchand Mahalik, "MEMS", Tata McGraw Hill, 2nd Reprint 2008

3. Wanjun Wang and Steven A.Soper, "BioMEMS- Technologies and applications", CRC Press, First edition 2007.

Reference Books:

REVISION-3

1. Tai-Ran Hsu, "MEMS and Microsystems- Design, Manufacture and Nanoscale Engineering", John Wiley and Sons, 2nd Edition 2008.

2. Gerald A Urban, "BioMEMS", Springer, First Edition 2006.

3. Abraham P. Lee and James L. Lee, "BioMEMS and Biomedical Nanotechnology", Volume I, Springer, First Edition 2006.

4. Paul C.H. Li, "Introduction to Microfluids and BioMEMS: A Design and Problem-Solving Textbook", CRC Press, First Edition 2009.

5. Hari Singh Nalwa, "Nanostructured Materials and Nanotechnology", Academic Press, First Edition 2002.

Արզ

9 Hrs

9 Hrs

9 Hrs

9 Hrs

Subject Code BBI17E07	: 5	Subject Na	ame: R	ADIOL	OGICA	L EQU	IPMEN	NTS	T / L/ ETL	L	T / S.Lr	P/ R	C
	F	Prerequisit	e:						Т	3	0/0	0/0	3
L : Lecture T :	Tutor	rial SLr :	Supervise	ed Leari	ning P:	Project	R : Res	earch C	: Credits				
T/L/ETL : The		ab/Embed	ded Theor	y and L	ab								
OBJECTIVE													
To Ga													
		out Radio											
		out Speci											
		out Vario			Radiois	otopes							
		bout Radia											
COURSE OU			, , ,		D								
CO1		Acquires		/									
CO2 CO3		Capable t					nta						
C03 C04		Understar Acquires			<u> </u>	<u> </u>		dioicoto	200				
C04 C05		Acquires Analysis	0		nous Ap	pricatio	n Of Ka	01015010	pes				
Mapping of C	Ourco			2	Autoom		c)						
COs/POs	PO1		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	M	H	L	M	L	L	M	H	L	M	H		H
CO2	H	H	M	L	H	M	L	M	H	H	H		L
CO3	M	H	L	M	H	L	M	L	L	M	H		M
CO4	H	M	L	M	H	L	M	H	L	M	H		L
CO5	L	M	H	M	H	L	M	H	M	L	M		H
COs / PSOs]	PSO1	PSC)2	PS	O3	PS	504	PSO5				
CO1		М	Н		I		-	M	Н				
CO2		М	Н		I			М	Н				
CO3		Н	L		N	М		Н	L				
CO4		L	Μ	[H	Н		L	М				
CO5		М	Н	[N	Л		L	Н				
H/M/L indicate	es Stre	ength of C	orrelation	H- Hi	gh, M- M	Medium	, L-Low	7			•		
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval													

Department of BIOMEDICAL INSTRUMENTATION ENGINEERING

RADIOLOGICAL EQUIPMENTS

UNIT I X-RAYS

Principles and production of soft and hard X-rays, selection of anodes, Heel Pattern. Scattered radiation, Porter Bucky system, Cooling system.

UNIT II RADIO DIAGNOSIS

Radiography, Angiography, Fluoroscopy, Image Intensifier, Multi section radiography.

UNIT III SPECIAL RADIOLOGICAL EQUIPMENTS

Principle, Plane of Movement, Multi section Radiography, CAT. Principle of NMR, MRI

UNIT IV APPLICATION OF RADIOISOTOPES

Alpha, Beta and Gamma emission, Principle of radiation detectors, dot scanners, nuclear angiogram, Principles of Radiation therapy.

UNIT V RADIATION SAFETY

Hazardous effect of Radiation, Radiation protection Techniques, Safety Limits, Radiation Monitoring.

Total Number of Hours: 45 Hrs

Text Books:

1. R.S.Khandpur, "Handbook of Biomedical Instrumentation", Tata McGraw-Hill Publishing Company Ltd., New Delhi, 1997.

2. Steve Webb, "The Physics of Medical Imaging ", Adam Hilger Philadelphia 1988.

Reference Books:

1. William R.Hendee, E.Russel Ritenour, "Medical Imaging Physics", Third Edition, Mosby Year Book, St. Louis, 1992.

9 Hrs

9 Hrs

9 Hrs

9 Hrs

Subject Code	: !	Subject Na	ame: B	IOLOG	ICAL E	FFEC	FS OF		T / L/	L	Τ/	P/ R	С	
BBI17E08		RADIATI							ETL		S.Lr			
		Prerequisit							Т	3	0/0	0/0	3	
L : Lecture T :			·		•	Project	R : Res	search C	: Credits					
T/L/ETL : The		.ab/Embed	ded Theor	ry and L	ab									
OBJECTIVE		hant Aatis		inting O		Calla								
 To Stu To Lease 		bout Actio												
		owledge C												
		bout Effect					atters							
		owledge C				vv 1t11 1 v 1	atters							
COURSE OU		-												
CO1	100	Understa	· · · ·		liation C	n Livin	g Cells							
CO2		Capable t					č	ion						
CO3														
CO4		Acquires Knowledge On Genetic Effects Of Radiation Understands Effect Of Microwave And RF With Matters												
CO5		Acquires Knowledge On UV Radiation												
	ourse	urse Outcomes with Program Outcomes (POs)												
COs/POs	PO1		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12	
CO1	Μ	Н	М	L	Н	М	L	М	Н	L	М	Н		
CO2	Μ	Н	L	М	Н	L	М	Н	L	М	Н	L		
CO3	Н	М	L	Н	М	Н	М	Н	L	М	Н	L		
CO4	L	М	Н	L	М	Н	L	М	Н	L	М	Н		
CO5	Η	М	L	М	Н	L	М	Н	L	М	Н	L		
COs / PSOs		PSO1	PSO	02	PS	O3	PS	SO4	PSO5					
CO1	Μ		Н		L		Μ		Н					
CO2	Η		М		Н		L		Н					
CO3	L		М		Н		L		М					
CO4	Η		L		М		Η		М					
CO5	Μ		L		Н		L		М					
H/M/L indicate	es Str	ength of C	orrelation	H- Hi	gh, M- I	Medium	, L-Low			-				
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills					
Approval														

BIOLOGICAL EFFECTS OF RADIATION

UNIT I ACTION OF RADIATION ON LIVING CELLS

Various theories related to radiation at cellular level, DNA and chromosomal damages, experiments on computation of various parameters related to this radiation exposure

UNIT II SOMATIC APPLICATION OF RADIATION

Radiosensitivity protocols of different issues of human, LA\D 50/30 effective radiation on skin, bone marrow, eye, endocrine glands, basis of radiotherapy.

UNIT III GENETIC EFFECTS OF RADIATION

Thresholds and linear dose, gene control hereditary diseases, effect of dose and I Infleneceson genetic equilibrium.

UNIT IV EFFECT OF MICROWAVE AND RF WITH MATTERS

Effects on various human organs and systems, wavelength in tissues, nonthermal interaction, low frequency radiation, measurement devices used to compute the thermal effects, standards of protection, national and international standards and precautions.

UNIT V UV RADIATION

Classification of sources, measurement, photo medicine, UV radiation safety Visibleand infrared radiation, combined effect of UV and IR, dose measuring instruments sed safety standards for this radiation

Total Number of Hours: 45 Hrs

Text Books:

1. Glasser.O. Medical Physics, vol I, II, III, The year book Publishers linc., Chicago, 1980. 2. Baranski.S and Cherski.P, Biological effects of microwave, Hutchison and Ross Inc., Stroudsburg, 1980.

Reference Books:

1. Moselly.H non-ionizing Radiation, Adam-Hilgar, Bristol, 1988

9 Hrs

9 Hrs

9 Hrs

9 Hrs

Subject Code:	: 5	Subject Na	ame: C	COMPU	TERS I	N MED	ICINE		T/L/	L	T/	P/ R	C	
BBI17E09	г								ETL T	3	S.Lr	0/0	3	
I. I. Lastuma T.		Prerequisit		ad Lagree	ina D.	Droigot	D . Dec	aarah C		3	0/0	0/0	3	
L : Lecture T : T/L/ETL : The			·		•	Project	R : Res	earch C	Credits					
OBJECTIVE		au/ Linueu		y and L	au									
➤ To lease		out Overvie	ew Of Co	mputer I	Hardwar	e								
		wledge on												
	•	out Compu												
		mputers In												
		wledge on	-		edical Re	esearch								
COURSE OU	TCO				<u></u>									
CO1		Understar				-	ardware							
CO2		Gains kno	<u> </u>											
CO3		Acquires	Ŭ					Ŭ						
CO4 CO5		Understands Computers In Medical Systems Modeling Acquires knowledge on Computers In Medical Research												
Mapping of C	ourco							earch						
COs/POs	PO1		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12	
CO1	M	H	L	M	H	L	107 M	H	M	L	M		H	
CO2	H	M	L	M	H	L	M	L	H	M			M	
CO3	L	M	H	L	M	H	L	M	H	L	M		H	
CO4	H	M	L	M	H	L	M	H	L	M	H		L	
CO5	Μ	Н	L	М	Н	L	М	Н	L	М	Н		L	
COs / PSOs	I	PSO1	PSC	02	PS	03	PS	504	PSO5					
CO1		М	L		I	H]	М	L					
CO2		Н	Μ	[Н		L	М					
CO3		М	L			Н		L	М					
CO4		Н	L			N		Н	L					
CO5		L	Μ			H		L	М					
H/M/L indicate	es Stre	ength of C	orrelation	H- Hi	gh, M- 1	Medium	, L-Low			Г	1	-		
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills					
Approval														

COMPUTERS IN MEDICINE

UNIT I OVERVIEW OF COMPUTER HARDWARE PC-AT

8086 architecture, system connections, Instruction set and programming, Microcontrollers, Motherboard and its logic, RS232-C and IEEE bus standards, CRT controllers, FDC, HDC and Post sequence, PC based video card, modems and networking.

UNIT II SYSTEM DESIGN

Multichannel computerised ECG, EMG and EEG data acquisition, storage and retrieval, transmission of signal and images.

UNIT III COMPUTERS IN PATIENT MONITORING

Physiological monitoring, automated ICU, computerised arrhythmia monitoring, information flow in a clinical lab, computerised concepts, interfacing to HIS

UNIT IV COMPUTERS IN MEDICAL SYSTEMS MODELING

Radiotherapy, drug design, drug delivery system, physiological system modeling and simulation

UNIT V COMPUTERS IN MEDICAL RESEARCH

Role of expert systems, pattern recognition techniques in medical image classification, ANN concepts

Total Number of Hours: 45 Hrs

Text Books:

1. R.D.Lele, "Computers in Medicine", Tata McGraw-Hill, New Delhi, 1999.

Reference Books:

1. Douglas V.Hall, "Microprocessors and Interfacing : Programming and hardware", McGraw Hill, Singapore, 1999.

9 Hrs

9 Hrs

9 Hrs

9 Hrs

Subject Code BBI17E10	: 8	Subject Na	ame : M	EDICA	L INFO	RMAT	ICS		T / L/ ETL	L	T / S.Lr	P/ R	C		
	F	Prerequisit	e:						Т	3	0/0	0/0	3		
L : Lecture T :	: Tutor	ial SLr :	Supervise	ed Learr	ning P:	Project	R : Res	earch C	C: Credits						
T/L/ETL : The	eory/L	ab/Embed	ded Theor	y and L	ab	-									
OBJECTIVE	:														
≻ To Ga							ology								
		out Overv				are									
		out Hospi							. ~						
								Informa	tion Syster	ns					
		out Integr			rmation	System	S								
COURSE OU	TCO				. 1.	11.0		- 1 1							
CO1		Acquires		,					U 1						
CO2		Acquires		,					e						
CO3		Acquires		,					1' T C						
CO4			cquires Knowledge On Visual Programming And Multimedia Information Systems cquires Knowledge On Integrated Medical Information Systems												
CO5	1			,,	<u> </u>			nation S	ystems						
		Outcomes with Program Outcomes (POs)													
COs/POs	PO1	PO2	PO3	PO4		PO6	PO7	PO8	PO9	PO10	PO11				
CO1	H	M	L	L	L	H	M	L	M	H	L		M		
CO2	M	H	L	M	H	L	M	H	L	M	H				
CO3	L	M	H	L	M	H	L	M	H	L	M		H		
CO4	M	H	L L	M	H	L	M	H	L	M	H				
CO5	L	M	L	Н	L	M	Н	L	M	Н	L	ſ	M		
COs / PSOs	1	PSO1	PSC	22	DC	O3	D	504	PSO5						
COS / PSOS	1	M	H			<u>U</u>		M	H			-			
CO1 CO2		H	M			<u></u>		M	H						
CO2		L	M			H	-	L	M						
CO4		M	L			A		L H	L						
CO5		H	M			<u>vi</u>		M	H						
H/M/L indicat	es Stre				gh, M- 1				11						
Category		Engineering Sciences	Social					Internships / Technical Skill							
	Basic Sciences	Engineerii	Humanities and Sciences	Program Core	Program Electives ≺	Open Electives	Practical / Project	Internship	Soft Skills						
Approval															

MEDICAL INFORMATICS

UNIT I BIOMEDICAL INFORMATION TECHNOLOGY

Historical highlights of Healthcare Information systems – Biomedical Information systems – problems and pitfalls - History and evolution of Electric resources - Internet and Interactive Multimedia components.

UNIT II OVERVIEW OF COMPUTER HARDWARE

Motherboard and its logic – memory and I/O interfacing, memory and I/O map I/O peripherals and add-on cards, RS 232-C and various IEEE standards.

UNIT III HOSPITALS INFORMATION SYSTEMS

Concept of HIS and its Position on the hospital – introduction of a computerized HIS-application of HIS in project management – Automation of Medical record – hospital Inventory data protection aspects – costs and benefits of HIS - transfer of information within the hospital - Modems and computer networking in Hospitals.

UNIT IV VISUAL PROGRAMMING AND MULTIMEDIA INFORMATION SYSTEMS 9 Hrs

Visuals Basic principles and programming – Design, Production and testing of multimedia based medical information systems.

UNIT V INTEGRATED MEDICAL INFORMATION SYSTEMS

Integration of Intra and Inter hospital information systems - Role of expert systems and fuzzy logic in medical information systems - Physiological system modeling and simulation - Concepts of Virtual reality, web based multimedia information systems - video conferencing.

Total Number of Hours: 45 Hrs

Text Books:

- 1. S.K. Chauhan, . "PC Organisation", S.K. Kataria and sons, Delhi.
- 2. Haroid sackman, "Biomedical Inforamtion Technology, Academic Press, New York, 1997.

Reference Books:

- 1. Mary Beth Fecko, "Electronic Resources: Access and Issues, Bowker-saur, London, 1997.
- 2. R.D. Lele, "Computers in medicine", Tata McGraw Hill, New Delhi, 1999.
- 3. Tay Vaughan, "Multimedia making it work", Tata McGRaw Hill, New Yotk, 1999.
- 4. Mark Spenik, "Visual Basic 6, Iterative Course", Techmedia, New Delhi, 1999.

9 Hrs

9 Hrs

9 Hrs

Subject Code BBI17E11		ubject Na NSTRUM		TIBRE (OPTICS	AND I	LASER		T / L/ ETL	L	T / S.Lr	P/ R	C		
DDII/LII		rerequisit							T	3	0/0	0/0	3		
L : Lecture T				ed Lear	ning P ·	Project	R · Res	search (5	0/0	0/0	5		
T/L/ETL : The						Tiojeet	11.110		. creatto						
OBJECTIVE				- <u> </u>											
\succ	Intro	duction to	o basic co	ncepts o	f optical	fibers a	and their	· industr	rial applica	tions.					
									ptical fibe						
		erstanding													
\triangleright							al applic	cation of	f lasers and	the Ind	ustrial ap	plicatio	n of		
		ography ai		A A	ations of	lasers									
COURSE OL															
CO1									strial appli						
CO2				<u> </u>			applica	tion of	optical fibe	ers					
CO3			Inderstands basic concepts of lasers. Inderstands basic knowledge about Industrial application of lasers and the Industrial application												
CO4			nderstands basic knowledge about Industrial application of lasers and the Industrial application Holography and Medical applications of lasers												
		of Hologi	f Holography and Medical applications of lasers												
		Outcomes with Program Outcomes (POs)													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO			
CO1	M	H	L	M	L	M	H	L	M	H	L		M		
CO2	H	M	L	M	H	L	M	H	L	M	H		L		
CO3	L	M	H	L	M	H	L	M	H	L	M		H ·		
CO4	Н	M	L	М	Н	L	M	Н	L	M	Н		L		
COs / PSOs	г	PSO1	PSO		DC	03	D	SO4	PSO5						
CO3 / F3OS	1	M	H H			<u>U3</u> L	-	M	H						
CO1 CO2		M	L			H		M	L						
CO2 CO3		M	H			. 1 [M	H						
CO4		M	H			L		M	H						
H/M/L indicat	tes Stre				igh, M- I				11						
								Skill							
		S	Social					cal							
Category		nce	Soc		S		t	hni							
	s	cie			ive	ŝ	jec	ec							
	Jce	S ac	s ar	ore	lect	ive	Pro	L/:							
	ciei	rin	s	C	лE	lect	1/]	iips	lls						
	Š	nee	ani	ran	ran	ΙEI	ica	nsh	Ski						
	Basic Sciences	Engineering Sciences	Humanities and Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical	Soft Skills						
	B	ш	ΗŇ	Ъ	_P_	0	Ę	Ir	Ň						
					v					<u> </u>					
Approval															

FIBRE OPTICS AND LASER INSTRUMENTS

UNIT I OPTICAL FIBERS AND THEIR PROPERTIES

Principles of light propagation through a fiber – different types of fibers and their properties transmission characteristics of optical fiber - absorption losses - scattering losses - dispersion - optical fiber measurement - optical sources - optical detectors - LED - LD - PIN and APD

UNIT II INDUSTRIAL APPLICATION OF OPTICAL FIBERS

9 Hrs Fiber optic sensors - fiber optic instrumentation system - different types of modulators - detectors application in instrumentation - interferometric method of measurement of length - moiré fringes measurement of pressure, temperature, current, voltage liquid level and strain – fiber optic gyroscope – polarization maintaining fibers.

UNIT III LASER FUNDAMENTALS

Fundamental characteristics of lasers – three level and four level lasers – properties of laser – laser modes – resonator configuration – Q-switching and mode locking – cavity dumping – types of lasers: gas lasers, solid lasers, liquid lasers and semi conductor lasers

UNIT IV INDUSTRIAL APPLICATION OF LASERS

Laser for measurement of distance, length velocity, acceleration, current, voltage and atmospheric effect – material processing – laser heating, welding melting and trimming of materials – removal and vaporization

UNIT V HOLOGRAM AND MEDICAL APPLICATION

Holography – basic principle; methods; holographic interferometry and applications, holography for non – destructive testing - holographic components - medical applications of lasers; laser and tissue interaction laser instruments for surgery, removal of tumors of vocal cords, brain surgery, plastic surgery, gynecology and oncology

Total Number of Hours: 45 Hrs

Text Books:

1. John and Harry, Industrial lasers and their applications, McGraw-Hill, 1974

2. Senior J.M., Optical Fiber Communication Principles and Practice, Prentice Hall, 1985

Reference Books:

- 1. John F Read, Industrial applications of lasers, Academic Press, 1978
- 2. MonteRoss, Laser applications, McGraw-Hill, 1968
- 3. Keiser G., Optical Fiber Communication, McGraw-Hill, 1991
- 4. Jasprit Singh, Semi conductor optoelectronics, McGraw-Hill, 1995

9 Hrs

9 Hrs

9 Hrs

Subject Code		Subject Na		AGNOS	STIC an	d THE	RAPEU	JTIC	T / L/	L	T/	P/ R	C
BBI17E12		EQUIPMI							ETL T	3	<u>S.Lr</u> 0/0	0/0	3
L : Lecture T		Prerequisit		ed Lear	ning P.	Project	R · Res	earch (3	0/0	0/0	5
T/L/ETL : The						Toject	K.KC		. creans				
OBJECTIVE	2			<u> </u>									
		ut cardiac	system										
		out neurol											
		wledge on			r system								
		ut heart-lu	•										
To stu	idy abo	out respira	tory meas	urement	t and ver	ntilator							
COURSE OU	JTCO	MES (CO	(3-5))									
CO1		Acquires			t cardiac	system							
CO2		Graduate						ı					
CO3		Understan	<u> </u>	Ŭ		<u> </u>							
CO4		Acquires	<u> </u>	,		0							
CO5			<u> </u>	Ŭ	<u> </u>			nent and	d ventilato	r			
Mapping of C													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	
CO1	M	Н	L	M	L	H	L	M	H	L	M		H
CO2	M	L	H	M	L	M	H	L	M	H	L		M
CO3 CO4	M L	H M	L H	M	H M	L H	M L	H M	L H	M L	H M		L H
CO4 CO5	L H	M	L H	L M	H	н L	M	H	L	M	H		н L
05	11	IVI		101	11		IVI	11		IVI	11		
COs / PSOs	1	PSO1	PS	02	PS	03	P	SO4	PSO5				
CO1		M	H			L		M	H				
CO2		Н	N	1]	H		L	М				
CO3		L	N	1]	Ĺ		Н	М				
CO4		М	H			L		М	М				
CO5		М	H		-	Ĺ		М	Н				
H/M/L indicat	tes Stre	ength of C	orrelation	H- Hi	igh, M- l	Medium	i, L-Low						
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives ✓	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval		1	1	I	1	I	1		1	1			

Department of **BIOMEDICAL INSTRUMENTATION ENGINEERING**

DIAGNOSTIC AND THERAPEUTIC EQUIPMENTS I

UNIT I CARDIAC SYSTEM

ECG, sources of ECG, normal and abnormal waveform, diagnosis interpretation, cardiac pacemakerexternal pacemaker, implantable pacemaker, different types of pacemakers, fibrillation, defibrillator, AC defibrillator, DC defibrillator, electrodes, synchronised and unsynchronised types

UNIT II NEUROLOGICAL SYSTEM

EEG, genesis, lead system, wave characteristics, frequency bands, spontaneous and evoked response, diagnostic interpretation, epileptic discharges

UNIT III SKELETAL MUSCULAR SYSTEM

Structure of muscles, sliding theory of contraction, stimulation of muscles, muscle potential generation, recording and analysis of EMG waveforms, muscle and nerve stimulation, fatigue characteristics

UNIT IV HEART-LUNG MACHINE

Need for the unit, functioning of bubble, disc type and membrane type oxygenerators, fingerpump, roller pump, electronic monitoring of functional parameter

UNIT V RESPIRATORY MEASUREMENT AND VENTILATOR

Spirometer, Respiratory volume measurement, pnemograph, artificial respirator - IPR type, functioning

Total Number of Hours: 45 Hrs

Text Books:

1. John G. Webster, "Medical Instrumentation Application and Design", John Wiley and sons, New York, 1998.

Reference Books:

1. Khandpur R.S, "Handbook of Biomedical Instrumentation", Tata McGraw-Hill, New Delhi, 1997.

2. Joseph J.carr and John M. Brown, "Introduction to Biomedical equipment technology", John wiley and sons, New York, 1997.

9 Hrs

9 Hrs

9 Hrs

9 Hrs

Subject Code		ubject Na			Γ ADVA	NCES	APPLI	ED	T / L/	L	Τ/	P/ R	C	
BBI17E13		TO HOSP		GINEF	RING				ETL		S.Lr			
		Prerequisit							Т	3	0/0	0/0	3	
L : Lecture T :						Project	R : Res	earch C	: Credits					
T/L/ETL : The		ab/Embed	ded Theor	y and L	ab									
OBJECTIVE		a 1												
> To lea						pments								
		wledge on out Networ		Ingineer	ing									
		wledge on		ic Sens	ors For N	Aeacuri	ng Physi	iologica	l Paramete	arc				
		ut Emi Ar						lologica	i i aranneu	15				
COURSE OU					o nospr	tui Equi	pineints							
CO1		Acquires			ndardisa	ation Of	Hospita	l Equip	ments					
CO2		A	Ŭ				1105p10	<u></u>						
CO3		Gains knowledge on Clinical Engineering Graduate understands Networking												
CO4		Gains knowledge on Fibre Optic Sensors For Measuring Physiological Parameters												
CO5		Acquires knowledge EMI And EMC Applied To Hospital Equipments												
Mapping of C	ourse	rse Outcomes with Program Outcomes (POs)												
COs/POs	PO1	1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12												
CO1	Η	М	L	М	L	Μ	Н	L	М	Н	L	Ν	M	
CO2	Μ	L	Н	Μ	L	Μ	Н	L	М	Н	L	N	Ν	
CO3	L	М	Н	L	Μ	Н	L	Μ	Н	L	М		Н	
CO4	Η	М	L	Μ	Н	L	Μ	Н	L	М	Н		L	
CO5	M	Н	L	Μ	Н	L	M	Н	L	М	Н]	Ĺ	
COs / PSOs	I	PSO1	PSC		PS			<u>504</u>	PSO5					
CO1		H	M		I			M	H					
CO2		M	H		I			M	H			_		
CO3 CO4		L M	M H		ı I	H		L M	M H					
C04 C05	-	H H	Л			 /		H	L					
H/M/L indicate	l es Stre				gh, M- M					<u> </u>				
	cs sut			11-11	gii, ivi- I		, L-L0W							
Category	Basic Sciences	Engineering Sciences Humanities and Social Sciences Program Core Program Electives Open Electives Practical / Project Internships / Technical Skill Soft Skills												
Approval						<u> </u>								

RECENT ADVANCES APPLIED TO HOSPITAL ENGINEERING

UNIT I STANDARDISATION OF HOSPITAL EQUIPMENTS

Need for standardization, classification of equipments, international standards, Experimental methods of testing standards, maintenance of standards and recalibration.

UNIT II CLINICAL ENGINEERING

Hospital design, electrical, air – conditioning, sanitation, ventilation, safety regulation to be incorporated in the hospital center, management and legal aspects, latest rug delivery systems for sustained delivery of medicines.

UNIT III NETWORKING

Importance of networking, LAN features, network topologies, LAN components, network operating system, basic data communication concept, application, LAN and multi-user system, planning and installing LAN in hospital set up.

UNIT IV FIBRE OPTIC SENSORS FOR MEASURING PHYSIOLOGICAL PARAMETERS

9 Hrs Different optical sources, optical detectors, principle of fiber optic cables, single mode multi mode, step index and graded index type, sensors based on polarisation, interferometer principle, magnetic sensors, application of the sensors in measuring pressure, temperature, flow, rotation and chemical activites, principles of smart sensors.

UNIT V EMI AND EMC APPLIED TO HOSPITAL EQUIPMENTS

Principles of EMI, computation of EMI, measuring techniques to quantify the level of interference, method of suppressing and isolating this unit from interference

Total Number of Hours: 45

Hrs

Text Books:

1. Donald R.J. White, A Handbook of electromagnetic Interference and Compatibility, Vol 4, 5, Published by Donwhite Constant – Maryland, 1972.

2. Webster J.G. and Albert M. Cook, Clinical Engineering Principles and Practices Printice Hall Inc, Englewood Cliffs, New Jersery, 1979.

3. Bernhard Keiser, Principles of Eletromagnetic Compatibility, Artech House- 3rd Edition, 1986.

Reference Books:

1. Eric Udd, Fiber Optic Sensors and introduction for engineers and scientists, Wiley Interscience Publication, New Delhi, 1991.

2. Bajbai, P.K. Ceramic – a novel device for sustained long term delivery of drugsBio Ceramic Vol III,

3. Rose Heliman Institute of Technology, Terrahaute, Indian, 1992.

4. S.K. Basandia, Local Area Network, Golgotia Publishing Pvt Ltd., New Delhi, 1995.

9 Hrs

9 Hrs

9 Hrs

Subject Code BBI17E14		Subject Na THERAP							T / L/ ETL	L	T / S.Lr	P/ R	C		
		Prerequisit		C					Т	3	0/0	0/0	3		
L : Lecture T						Project	R : Res	search C	C: Credits						
T/L/ETL : The		.ab/Embed	ded Theor	ry and L	.ab										
OBJECTIVE															
		out Ultraso													
		wledge on out Diathe		Ionitorii	ng And I	Biotelen	netry								
		out Diatile		ic Tech	niques										
		wledge on			inques										
7 10 gu		wieuge on	i unone o	uloty											
COURSE OU	JTCO	MES (CO	(3-5))											
CO1			knowledg	/	trasonic	Technic	ques For	Diagno	osis						
CO2		Graduate	understan	ds Patie	nt Moni	toring A	And Biot	elemetr	у						
CO3			nds Diathe												
CO4		Graduate				ial Diag	echniqu	ies							
CO5	~		nds Patien	5			<u></u>								
	1		Putcomes with Program Outcomes (POs)												
COs/POs	POI		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10			12		
CO1 CO2	M H	H M	L L	M H	H M	L L	M H	L L	H M	M H	L L	H M			
CO2 CO3	н Н	M	L	М	H	L L	М	H	L	М	H	L			
CO4	M	L	M	H	L	M	H	L	M	H	L	M			
C04 C05	L	M	L	M	H	L	M	H	L	M	H	L			
005	L	141		101	11	L	141	11		IVI					
COs / PSOs		PSO1	PS	52	PS	03	P	SO4	PSO5						
CO1	Μ		М		L		Н		М						
CO2	Η		М		L		М		Н						
CO3	Μ		Н		L		Н		М						
CO4	Μ		Н		L		М		Н						
CO5	L		М		Η		L		М						
H/M/L indicat	es Str	ength of C	orrelation	H-H	igh, M- l	Medium	n, L-Low								
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills						
Approval					✓	<u> </u>	<u> </u>			<u> </u>					

DIAGNOSTIC AND THERAPEUTIC EQUIPMENTS - II

UNIT I ULTRASONIC TECHNIQUES FOR DIAGNOSIS

Basic principles of Echo technique, display techniques A, B, M modes, Echo cardiograms, Echo encephalogram, Ultrasonic applied as diagnostic tool in ophthalmology, obstetrics and gynecology.

UNIT II PATIENT MONITORING AND BIOTELEMETRY

Patient monitoring system – ICU, post operative, ICCU, single channel telemetry, Multichannel telemetry, frequency allotment, radiopill - Transmission of Biosignals over telephone lines

UNIT III DIATHERMY

Clinical applications of electrotherapy, short wave diathermy, ultrasonic diathermy, microwave diathermy, surgical diathermy unit, IR lamps, UV lamps

UNIT IV SPECIAL DIAGNOSTIC TECHNIQUES

Principles of Cryogenic technique and application, Endoscopy, Laparoscopy, Thermography

UNIT V PATIENT SAFETY

Sources of leakage current, Micro and Macro shock, monitoring circuits, earthing schemes

Total Number of Hours: 45 Hrs

Text Books:

1. Khandpur R.S, "Handbook of Biomedical Instrumentation", Tata McGraw-Hill, New Delhi, 1997.

Reference Books:

1. John G.Webster, "Medical Instrumentation Application and Design", John Wiley and sons, New York, 1998.

2. Joseph J.Carr and John M.Brown, "Introduction to Biomedical Equipment technology", John Wiley and sons, New York, 1997.

9 Hrs

9 Hrs

9 Hrs

9 Hrs

Subject Code		ubject Na			I THEC	ORY AF	PLIED	TO	T / L/	L	T /	P/ R	С	
BBI17E15		BIO-MEII		IGINEI	ERING				ETL T	2	<u>S.Lr</u> 0/0	0/0	2	
L. Lesture T.		Prerequisit			in a D.	Ducient	D . D .	a a rah C		3	0/0	0/0	3	
L : Lecture T : T/L/ETL : The						Project	R : Kes	search C	Credits					
OBJECTIVE		au/Embeu		y and L	au									
> To Lea		out Syster	m Concep	t										
		owledge O			oction									
To Stu	ıdy At	out Imped	lance Con	cept										
		out Period												
		owledge O			Biologic	al Syste	ms							
COURSE OU														
CO1		Understar												
CO2		Acquires					on							
CO3		Graduate understands Impedance Concept												
CO4		Understands Periodic Signals, Feedback Simulation Of Biological Systems												
CO5				<u> </u>										
	1	rse Outcomes with Program Outcomes (POs)												
COs/POs	PO1	PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12												
CO1	M	М	М	L	Н	L	Μ	Н	L	Μ	Н			
CO2	M	Н	L	Μ	Н	L	Μ	Н	L	Μ	Н		Ĺ	
CO3	Μ	Н	L	M	Н	L	Μ	Н	L	М	Н		L	
CO4	M	Н	L	Μ	L	Μ	Η	L	М	Н	L		N	
CO5	M	Н	L	М	Н	L	M	Н	L	М	Н]	Ĺ	
COs / PSOs	Г	PSO1	PSC	20	DS	03	D	SO4	PSO5					
CO1	1	M	H			<u>U</u>		M	H					
CO2		М	Н			Ĺ		М	Н					
CO3		Н	М			L		Н	L					
CO4		L	Μ	[I	Н		L	М					
CO5		Н	Μ	[]	Ĺ		М	Н					
H/M/L indicate	es Stre	ength of C	orrelation	H- Hi	gh, M- l	Medium	, L-Low			<u> </u>				
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills					
Approval								·			·	•		

SYSTEM THEORY APPLIED TO BIO-MEIDCAL ENGINEERING

UNIT I INTRODUCTION

System Concept, System Properties, Piece -Wiser Linear Approximation, Electrical Analog for Compliance, Thermal Storage, Mechanical Systems, Step response of a Resistance/Compliant Systems, Pulse Response of First Order System.

UNIT II TRANSFER FUNCTION

System as an Operator use of Transfer Function, bioengineering of a Coupled System, Example of Transformed Signals.

UNIT III IMPEDANCE CONCEPT

Circuits for the Transfer Function with Impedance Concept Prediction of Performance.

UNIT IV PERIODIC SIGNALS, FEEDBACK

Sinusoidal Functions, Sinusoidal Analysis of Instrumentation System, Evaluation of Transfer Function s from Frequency Response, Relationship between Phase Lag and Time Delay Transient Response of an Undamped Second Order system, General Description of Natural Frequency Damping, Physical Significance of Under Damped Responses. Characterization of Physiological Feedback, System, Uses and Testing of System Stability.

UNIT V SIMULATION OF BIOLOGICAL SYSTEMS

Simulation of Skeletal music servomechanism, thermo Regulation, Cardiovascular control System, Respiration controls, Occulo Motor System, Endocrine control system and Modeling of receptors.

Total Number of Hours: 45 Hrs

Text Books:

REVISION-3

1. William B. Blesser, A System Approacg to Biomedicine, McGraw Hill Book Co., New York, 1969.

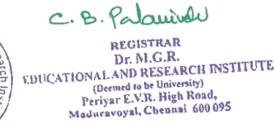
2. Manfreo Clynes and John H. Milsum, Biomedical Engineering System, McGraw Hill and Co, New York, 1970.

Reference Books:

1. Douglas S. Rigg, Control Theory and Physiological Feedback Mechancism, The William and Wilkins Co., Baltimore, 1970.

2. Riechard Skalak and Shu Chien, Handbook of Biomedical Engineering, McGraw Hill and Co., New York, 1987.

ational An


Registrar Office

Periyar E.V.R. High Road

Maduravoyal

o be Universit

Chennai-95

9 Hrs

9 Hrs

9 Hrs

9 Hrs